
Formula Plugin

Michael Gerhardt

Sven Schuchmann

▪ Instead of programming a behavior,
a calculation of values based on simple equations
is sometimes good enough

▪ Math is generally better understood than code

▪ Computed values based on signal values can easily
give additional information instead of manually
checking them, e.g.

– Use signals to calculate reference values

– Evaluate received checksums / alive counters

Motivation

Start

Main Dialog

Standard control elements to
edit shortcuts

▪ Create

▪ Edit

▪ Delete

▪ Import / Export
Information in overview

Active Formula will be evaluated / ignored

Name descriptive name given by user

Evaluation event when is this formula is executed
(e.g. trigger, timer, etc.)

Dependency additional information for evaluation event
(e.g. linked Message, timing)

„Red line marker” Formula can not be evaluated because of error

Edit Dialog

Editable Formula, different equations divided by semicolon

Setting when formula should be evaluated

Additional config for evaluation event

Unique name Check for syntax/configuration errors

Detailed error

information

Evaluation types

Trigger

No evaluation No automatic evaluation of the formula. An evaluation can be performed
using the context menu of the formula list in the main window.

Pre Transmit Evaluation is performed before the selected message is sent.
Changes in message data at the time of evaluation are considered when
the next message is sent.

After Transmit Evaluation is performed after the specified message is sent.

On Receive Evaluation is performed when the specified message is received (only
available for real ECUs).

On Simulation Start One-time evaluation at the start of the simulation.

On Simulation Stop One-time evaluation at the end of the simulation.

As Action Defines the formula as an action within CanEasy to make the formula
available in the alarm and shortcut plug-ins as a response to events.

Interval Cyclic evaluation according to the cycle time.

After evaluation unit Evaluation of the formula according to the selected evaluation unit
(Formula).

Determines evaluation time of formula

Syntax of formulas

▪ The syntax is equation based
(first assignment also creates this variable, see Values/Variables(3)),
e.g.
a = 1;

▪ End of an equation is marked by semicolon, this can be used use multiple
equations in a single formula, e.g.
a = 1; b = 2; c = a * b;

▪ Comparisons can be used to determine boolean values, e.g.
boolResult = a == 3;

▪ Linebreaks can be inserted to structure the formula
▪ Comments can be added by using C/C++ syntax, e.g.

// rest of line is a comment
/* comment until the comment tags are closed */

▪ C-Function style syntax are used to access values from the database,
e.g.
Sig(„CorrectPathToSignalInDatabase") = 42;

▪ Formula variables do not need any declaration

Values and Variables (1)

CanEasy style unique path to element in database

Can be determined by copying database element or by drag&drop

Type of DB element Path example

CAN Signal //DB/Channel:Channel1/Node:ECU/Msg:Message3/Sig:SignalH

CANMessage //DB/Channel:Channel1/Node:ECU/Msg:Message1

LIN Signal //DB/Channel:Channel1/Node:ECU/UFrame:Frame/Sig:Signal

Environment Variable //DB/Channel:Channel1/Node:ECU/Env:Variables/FormulaResult

Path (Database String reference)

Short names for path identifiers
Short name Long name

//DB/Channel1/ECU/Message3/SignalH

or Sig:SignalH(*)

//DB/Channel:Channel1/Node:ECU/Msg:Message3/Sig:SignalH

//DB/Channel1/ECU/Message1 or

Msg:Message1(*)

//DB/Channel:Channel1/Node:ECU/Msg:Message1

//DB/Channel1/ECU/Variables/Formul

aResult

//DB/Channel:Channel1/Node:ECU/Env:Variables/FormulaResult

(*) Respective name must be unique in database if the shortest variant is used

Type of value Code to use in Plugin

Physical value of a
signal

Sig(“<PATH>”)

Value range according to signal configuration.

Single Byte of a
message

MsgByte(“<PATH>”, <byte position<)

Single byte of message (0..7), 8-Bit value range.

Environment variable UV(“<PATH>”)

Values and Variables (2)

Accessing values (getter/setter)

<PATH>: See prev. page for details/information

Values and Variables (3)

Formula variables

▪ No declaration of variables, first assignment creates variable
▪ Variables are type less
▪ Defined variables are shared between all formulas

(e.g. calculate a value in one formula and use it in another)

▪ Variables can be used as temporary storage or to structure complex
formulas

▪ Variables keep their value regardless of simulation start/stop
▪ Add timing elements to formulas

(e.g. increase variables on each evaluation)
▪ Type casts available:

bool / int / double
e.g. a = bool (n);

E.g. structuring:
TRes = UV(„Resolution“) * 2.45;

Result = Sig(„Signal1“) /

TRes;

E.g. timing/half sinus:
T = (T + 1) % 100;

Sig(„Signal1") = sin(T/100)*255;

▪ Prints output from the parser behind the formula
to allow the user better error analysis of complex
formulas.

▪ Three categories:
errors, warnings and information.

LogBrowser

Open LogBrowser

Easy checksums:

▪ Variant 1 (few/specific signals):
Sig("Sig:MsgChkSum") =

Sig("Sig:SignalA") XOR Sig("Sig:SignalB");

▪ Variant 2 (full message bytes):
Sig("Sig:MsgChkSum") =

MsgByte("Msg:Message3", 0) XOR

MsgByte("Msg:Message3", 1) XOR

MsgByte("Msg:Message3", 2) XOR

MsgByte("Msg:Message3", 3) XOR

MsgByte("Msg:Message3", 4) XOR

MsgByte("Msg:Message3", 5) XOR

MsgByte("Msg:Message3", 6);

Examples (1)

Complex formulas with Temporary variables:
Part1 =

((((((((((((MsgByte("Msg:Message3", 0) +

MsgByte("Msg:Message3", 1)) % 255) +

MsgByte("Msg:Message3", 2)) % 255) +

MsgByte("Msg:Message3", 3)) % 255) +

MsgByte("Msg:Message3", 4)) % 255) +

MsgByte("Msg:Message3", 5)) % 255) +

MsgByte("Msg:Message3", 6)) % 255);

Part2 =

(MsgByte("Msg:Message3", 0) +

MsgByte("Msg:Message3", 1) +

MsgByte("Msg:Message3", 2) +

MsgByte("Msg:Message3", 3) +

MsgByte("Msg:Message3", 4) +

MsgByte("Msg:Message3", 5) +

MsgByte("Msg:Message3", 6)) % 255;

Sig("Sig:MsgChkSum") = (Part1 + Part2) % 255;

Examples (2)

Alive counters:
Sig("//DB/Channel:Channel/Node:ECU/Msg:Message3/Sig:AliveCounter") =

Sig("//DB/Channel:Channel/Node:ECU/Msg:Message3/Sig:AliveCounter") + 1;

Examples (3)

Simple dampening based on cycle time of sent signal:
DampeningTimer = 50;

VValue = VValue - (Vvalue / DampeningTimer);

VValue = VValue +

Sig("//DB/Channel:Channel/Node:PTS/Msg:In/Sig:In");

Sig("//DB/Channel:Channel/Node:PTS/Msg:Out/Sig:DampenedOut") =

VValue / DampeningTimer;

DampeningTimer: iterations of formula evaluation needed to reach target value,
e.g. cyclic time 100ms => 100ms * 50 = 5 seconds

Examples (4)

Rising edge detection for signals:
InputCur =

Sig("//DB/Channel:Channel/Node:S2/Msg:MsgIn/Sig:Request");

RisingEdge = InputOld == 0 && InputCur == 1;

Sig("//DB/Channel:Channel/Node:S2/Msg:MsgOut/Sig:Response") =

Sig("//DB/Channel:Channel/Node:S2/Msg:MsgOut/Sig:Response") +

RisingEdge;

InputOld = InputCur;

Examples (5)

▪ Not every logic needs to be coded

▪ Be careful with the evaluation order
(e.g. mismatch of order for Alive counter /
Checksum)

▪ Variables are shared between all formulas, so use
meaningful and unique names if they should not be
shared

Final tips

Thank you for your attention!

