
CanEasy Automation - COM

Holger Dahinten

COM - Motivation

▪ If the configuration options and arithmetic
functions of CanEasy are not sufficient to simulate
the behavior of a control unit, programming is
necessary

▪ Programming can be done via integrated

– VBA (Visual Basic for Applications)

– VSTA (Visual Studio for Applications)

– MultiStudio (Visual Studio Code)

COM - Basics

▪ CanEasy provides all its
functions via a COM interface

▪ The COM interface is used by
VBA, VSTA and MultiStudio-
Applications

▪ Creating or modifying VSTA
code requires installed Visual-
Studio 2012 Professional
(or newer)

▪ VBA has integrated IDE but has
less development features
(e.g. no multi threading, and
only simple forms)

COM – Finding help

▪ You can open the COM help using the
context menu of VBA or pressing F1 inside
of the IDE

▪ Online examples can be found on GitHub:
https://github.com/HolgerDahinten/
CanEasySamples

VBA - Create a project

▪ Create new projects using
the context menu of the VBA
or VSTA2012 tree entries

▪ Using VSTA you can choose
between
C# and VB

▪ All project sources are
stored in the workspace

▪ Import and export is
possible

▪ Use project references to
other projects to implement
basic libraries

VBA – IDE / Macros

▪ Open the VBA IDE
(equal to Excel)
via the projects
context-menu

▪ Start public macros
directly from the
CanEasy tree

MultiStudio

▪ MultiStudio integrates Visual-Studio-Code
into CanEasy

▪ It allows writing code in:

– C#

– C++

– Python

– CAPL

MultiStudio – Create a project

▪ Via the context menu
you can create a new
application

▪ Choose your
programming
language and some
code template

▪ Enter a name for your
project

▪ Decide whether you
want an internal or
external application

MultiStudio –
Internal and External Apps

▪ Internal projects are stored in the CanEasy
workspace (csm file)

▪ You can just copy the workspace on another
machine and it will run

▪ External projects are stored just as reference.
They must be copied together with the workspace

▪ Code should be placed relative to the workspace

▪ External projects have the benefit of using Git

MultiStudio – Compile

▪ All applications except Python
must be compiled before
starting

▪ Press Ctrl+Shift + B to compile

▪ Or choose menu Terminal ->
Run Build Task

▪ Look into the output window to
check for any compiler errors

MultiStudio – Python

▪ Running more that one Python application requires
to activate “Multiple Python” mode.

▪ See CanEasy Settings->Applications.

▪ Without this setting you can just run one Python
script which can be required from some external
libraries.

MultiStudio – Single run

▪ If you write an application that needs to run only once,
you can call the Exit function.

▪ This stops the execution of your application.

▪ Because Exit will not terminate the thread don’t forget
to add return to stop further execution.

virtual void OnStarting() override
{

CanEasy().MakeReport("Hello, World!", ReportType::ReportTypeInformation);
Exit();
return;

}

MultiStudio – Start functions

▪ OnStarting function is called when the application
is started.

▪ OnStopping is called when application is stopped.

▪ OnSimulationStarted is called when simulation
was started.

▪ OnSimulationStopped is called when simulation is
stopped.

MultiStudio – Start mode

▪ The start mode defines when your application is
started

▪ Following modes are supported

Mode Description

On simulation start Application gets started and stopped
together with the CanEasy simulation

Workspace loading Application gets started directly when
the workspace was loaded

Manually only Application gets started manually by
context menu

COM – Features Overview

▪ Use Database to generate your communication matrix
dynamically or to handle value change events

▪ Use timer events from TimerControl to do cyclic stuff or
timeouts.

▪ Process received and transmitted messages using
TransmissionEvent

▪ Analyze the recorded messages using Record, RecordEntry
and RecordIterator

▪ Use CanEasy logging via ReportWnd
▪ Integrate CanEasy into other processes using

CanEasyApplication
▪ Remote control CanEasy from other processes using

CanEasyProcess
▪ Write tests and create reports with our TestReport

COM – CanEasyApplication

▪ CanEasyApplication is the root entry of all COM
objects

▪ Because it‘s the application object all properties and
methods can be accessed directly from VBA

▪ Using the application object, CanEasy can be
integrated into other processes

▪ Provides access to the database, timers, the record,
…

Sub App_Example()

CanEasyApplication.StartSimulation

StopSimulation

End Sub

COM – Simulation

▪ Provides events for simulation start and stop

▪ In most cases this event is the entry point for your
application

▪ Creating a new VBA project, one global simulation
object already exists and can be used to process
events

Private Sub Simulation_OnSimulationStarted()

' Called on simulation start

End Sub

Private Sub Simulation_OnSimulationStopped()

' Called on simulation stop

End Sub

COM – Simulation (VBA IDE)

Debug outputs with Debug.Print

COM – Report window

▪ For user feedback CanEasy provides a report
window

▪ Using COM you can create as much report tabs as
needed

▪ Every report has one of the following types

– Information

– Warning

– Error

▪ Call “MakeReport“ to write into the global tab

COM – Report window

▪ The example creates a new
report window and writes some
test output on simulation start

Private Sub Simulation_OnSimulationStarted()

MakeReport "Simulation started (COM output)", _

ReportTypeInformation

Dim oReport As ReportWnd

Set oReport = ReportWndCol.Add("Test XY")

oReport.Write "Starting test XY", ReportTypeInformation

End Sub

COM – Database

▪ The database is the entry point to access channels, ECUs, messages,
signals, variables, …

▪ Database items can be created, modified or deleted
▪ Every database item has

– a name
– attributes
– children
– a parent

▪ This allows to process the database in recursive way
▪ To get some specific item FindObject or GetObjectByStringRef can be

used
▪ To get the path of a database item use Ctrl+ C

Private Sub Simulation_OnSimulationStarted()

Dim oSig As Signal

Set oSig = Database.GetObjectByStringRef("Sig:CurrentSpeed")

oSig.ValuePhys = oSig.ValuePhys + 1

End Sub

COM – Create a database

▪ Every database item is inside a collection

▪ The collection can be used to insert new items

▪ Every database item must have a unique name
within the collection

▪ Creating new items is also possible if simulation is
started

Public Sub CreateDatabase()

Set oBus = Database.Busses.AddBus(BUSTYPE_CAN, "MyBus")

Set oEcu = oBus.ControlUnits.AddControlUnit("MyEcu")

Set oMsg = oEcu.Messages.AddMessage("MyMsg", &H123, 8)

Set oSig = oMsg.Signals.AddSignal("MySig", 0, 8, BYTEORDER_INTEL)

End Sub

COM – Create sequences using Sleep

▪ Simple sequences can be created by using
CanEasyApplication.Sleep

▪ Displayed speed must always be lower than current speed

Sub TestValue(oSigCurSpd As Signal, oSigDispSpd As Signal, dVal As Double)

oSigCurSpd.ValuePhys = dVal

Sleep 500

If oSigDispSpd.ValuePhys > dVal Then _

MakeReport „Invalid DisplaySpeed detected", ReportTypeError

End Sub

Sub TestSequence_DisplaySpeed()

Dim oSigCurSpd As Signal

Dim oSigDispSpd As Signal

Set oSigCurSpd = Database.GetObjectByStringRef("Sig:CurrentSpeed")

Set oSigDispSpd = Database.GetObjectByStringRef("Sig:DisplaySpeed")

TestValue oSigCurSpd, oSigDispSpd, 0

TestValue oSigCurSpd, oSigDispSpd, 100

TestValue oSigCurSpd, oSigDispSpd, 200

End Sub

COM – Timer

▪ CanEasy provides different timers

▪ The timers have a resolution of one millisecond

▪ Types of timers:
– TimerControl

• Allows to set a value in milliseconds

• Supports different modes like one shot

• If the timer is started the registered event handler will be called
cyclcally

– CaptureTimer
• Allows to capture user defined data together with some timestamp

• Can be used in time critical context (fast memory management)

– CompareTimer
• Can be initialized with content of the CaptureTimer for play back

• Calls the registered event handler corresponding to the configured
timer list

COM – TimerControl

Private WithEvents oTimer As TimerControl

Private oSig As Signal

Private Sub Simulation_OnSimulationStarted()

Set oSig = Database.GetObjectByStringRef("Sig:CurrentSpeed")

Set oTimer = CreateTimerControl

oTimer.Value = 1000

oTimer.Start

End Sub

Private Sub oTimer_OnTimer()

oSig.ValuePhys = oSig.ValuePhys + 1

End Sub

▪ Useful for doing something cyclically or
to implement timeouts

▪ On simulation start,
get signal reference
from database

▪ Create a new timer
with 1000 ms and
start it

▪ After simulation
start oTimer event
will be called
every second and
increments the
signal value

COM – Value change events

Private WithEvents oSig As Signal

Private Sub Simulation_OnSimulationStarted()

Set oSig = Database.GetObjectByStringRef("Sig:CurrentSpeed")

oSig.DataChangeEvents = True

End Sub

Private Sub oSig_OnChanged()

oSig.Send

End Sub

▪ Every value item supports events for value change
Examples: Messages, signals, variables, attributes

▪ By default event handler is asynchronous

▪ Change events must be activated using
DataChangeEvents property

▪ On signal value
change send
corresponding
message

COM – Transmission events

Private WithEvents oMsg As Message

Private Sub Simulation_OnSimulationStarted()

Set oMsg = Database.GetObjectByStringRef(„Msg:Motor1")

oMsg.TransmissionEvent.Active = True

End Sub

Private Sub oMsg_OnTransmission(ByVal transmission As CanEasy.TransmissionData)

If transmission.Received Then

MakeReport transmission.Message.Name & " received", ReportTypeInformation

Else

MakeReport transmission.Message.Name & " transmitted", ReportTypeInformation

End If

End Sub

▪ CanEasy supports events for transmitted and
received messages

▪ Transmission events are supported by database,
busses ECUs, messages and signals

▪ It provides various optional filters like message ID
ranges, channel and payload

▪ Events are queued and notified asynchrony

COM – TransmissionData

Private WithEvents oMsg As Message

Private Sub Simulation_OnSimulationStarted()

Set oMsg = Database.GetObjectByStringRef("Msg:Motor1")

oMsg.TransmissionEvent.Active = True

End Sub

Private Sub oMsg_OnTransmission(ByVal transmission As CanEasy.TransmissionData)

If transmission.Received Then

MakeReport transmission.Message.Name & " received", ReportTypeInformation

Else

MakeReport transmission.Message.Name & " transmitted", ReportTypeInformation

End If

End Sub

▪ As event parameter you can access the
TransmissionData object which provides the following
information
– Timestamp
– Direction (rx,tx)
– Bus object
– Message object containing signals to access physical values
– Message ID and payload

COM – Pre transmit events

Private WithEvents oMsg As Message

Private speedVal As Long

Private Sub Simulation_OnSimulationStarted()

Set oMsg = Database.GetObjectByStringRef("Msg:Motor1")

oMsg.PreTransmitEvents = True

End Sub

Private Sub oMsg_OnPreTransmit(ByVal transmission As CanEasy.TransmissionData, _

ByVal allowSend As CanEasy.BoolValue)

transmission.Data.Byte(1) = speedVal

speedVal = speedVal + 1

End Sub

▪ Similar to the transmission events you can register events
that are notified before a message is transmitted by
CanEasy

▪ From this event you have the possibility to change the
payload to be transmitted

▪ Execution must be fast because time critical threads must
wait till event was processed!

▪ It is also possible to deny sending a message

COM – Pre copy events

▪ Equal to the Pre transmit event there is some pre
copy event which is notified before received
messages are processed by CanEasy

▪ It is possible to deny messages or to change
received payload

COM – Access recorded messages

▪ The following example shows how to create a
RecordFilter and a RecordIterator to process all
messages.

▪ Processing the record is also possible while
simulation is running

Sub ProcessRecord()

Dim oFilter As RecordFilter

Set oFilter = Record.CreateFilter(RecordEntryType.MsgRecordEntry)

Dim oIter As RecordIterator

Set oIter = Record.CreateIterator(oFilter)

While oIter.Next

Dim oMsgEntry As MsgRecordEntry

Set oMsgEntry = oIter.RecordEntry

Call MakeReport(oMsgEntry.Timestamp & vbTab & _

oMsg.Bus.Name & vbTab & _

"0x" & Hex(oMsg.Id) & vbTab & _

oMsg.DLC & vbTab, ReportTypeInformation)

Wend

End Sub

COM – Workspace module

1. Using the COM interface you can save user data into the CanEasy workspace (csm
file) by creating a global object of WorkspaceModule

2. If the user saves the workspace WorkspaceModule.OnSaveWorkspace will be called
3. Initialize WorkspaceModule.ModuleData with your user data
4. When a new workspace was loaded Simulation.OnWorkspaceLoaded is called
5. There you need to call WorkspaceModule .ReloadModuleData to get event for
6. WorkspaceModule .OnLoadWorkspace. As paramter you get your stored data

Private WithEvents oWorkspaceModule As WorkspaceModule

Private Sub oWorkspaceModule_OnSaveWorkspace(ByVal success As CanEasy.BoolValue)

oWorkspaceModule.ModuleData = Array("Some data", 11)

success = True

End Sub

Private Sub Simulation_OnWorkspaceLoaded()

Set oWorkspaceModule = CreateWorkspaceModule("MyModuleName")

oWorkspaceModule.ReloadModuleData

End Sub

Private Sub oWorkspaceModule_OnLoadWorkspace(ByVal data As Variant,\

ByVal success As CanEasy.BoolValue)

For Each oEntry In data

Debug.Print oEntry

Next

success = True

End Sub

1.

2.
3.

4.

6.

5.

COM – Integration into a process

▪ CanEasy can be integrated into other processes
▪ By default CanEasy will show no main window and no

blocking message boxes
▪ Useful if you have time-critical requirements
▪ COM reference to “Schleissheimer CanEasy Typbibliothek”

must be set
▪ CanEasyApplication.Init must be called to load all plug- ins

into the process space

Sub Example_Integrate_CanEasy()

Dim oApp As CanEasy.CanEasyApplication

Set oApp = New CanEasy.CanEasyApplication

oApp.Init

' Open main window of CanEasy

oApp.AppWindow.Open

End Sub

COM – Remote control

▪ The CanEasy process can be controlled by other processes
▪ Creating CanEasyProcess starts CanEasy
▪ If CanEasy is already started, CanEasyProcess is attached to it
▪ COM reference to “Schleissheimer CanEasy Process

Typbibliothek” must be set
▪ By default CanEasy will be closed if CanEasyProcess object

gets deleted - call KeepAlive to prevent this
▪ Call GetApplication to get CanEasyApplication root entry

Sub Example_Remote_CanEasy()

Dim oProcess As CanEasyProcess.CanEasyProcess

Set oProcess = New CanEasyProcess.CanEasyProcess

oProcess.KeepAlive

Dim oApp As CanEasy.CanEasyApplication

Set oApp = oProcess.GetApplication

End Sub

Thank you for your attention!

	Slide 1: CanEasy Automation - COM
	Slide 2: COM - Motivation
	Slide 3: COM - Basics
	Slide 4: COM – Finding help
	Slide 5: VBA - Create a project
	Slide 6: VBA – IDE / Macros
	Slide 7: MultiStudio
	Slide 8: MultiStudio – Create a project
	Slide 9: MultiStudio – Internal and External Apps
	Slide 10: MultiStudio – Compile
	Slide 11: MultiStudio – Python
	Slide 12: MultiStudio – Single run
	Slide 13: MultiStudio – Start functions
	Slide 14: MultiStudio – Start mode
	Slide 15: COM – Features Overview
	Slide 16: COM – CanEasyApplication
	Slide 17: COM – Simulation
	Slide 18: COM – Simulation (VBA IDE)
	Slide 19: COM – Report window
	Slide 20: COM – Report window
	Slide 21: COM – Database
	Slide 22: COM – Create a database
	Slide 23: COM – Create sequences using Sleep
	Slide 24: COM – Timer
	Slide 25: COM – TimerControl
	Slide 26: COM – Value change events
	Slide 27: COM – Transmission events
	Slide 28: COM – TransmissionData
	Slide 29: COM – Pre transmit events
	Slide 30: COM – Pre copy events
	Slide 31: COM – Access recorded messages
	Slide 32: COM – Workspace module
	Slide 33: COM – Integration into a process
	Slide 34: COM – Remote control
	Slide 35

